

AFRL-IF-RS-TR-2005-236
Final Technical Report
June 2005

CASE AND MODEL DRIVEN DYNAMIC
TEMPLATE LINKING

BBN Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J934

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Copyright © 2005 by BBNT Solutions LLC.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-236 has been reviewed and is approved for publication

APPROVED: /s/
 JOSEPH A. CAROLI
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES W. CUSACK, Chief
 Information Systems Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2005

3. REPORT TYPE AND DATES COVERED
Final Mar 00 – Mar 05

4. TITLE AND SUBTITLE

CASE AND MODEL DRIVEN DYNAMIC TEMPLATE LINKING

6. AUTHOR(S)
Alice Mulvehill, Michael Callaghan, Mary Kennedy, Rick Altmann, Brian
Krisler, Virginia Travers, Ken Anderson

5. FUNDING NUMBERS
C - F30602-00-C-0039
PE - 63760E
PR - ATEM
TA - P0
WU - 06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BBN Technologies
10 Moulton Road
Cambridge MA 02138

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFSA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-236

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Joseph A. Caroli/IFSA/(315) 330-4205 Joseph.Caroli@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report summarizes a tool created under the DARPA Active Templates (AcT) program that allows users to define
templates, actively use (and modify) those templates for problem solving, and supports the reuse of templates based on
case-based reasoning. The goal of the AcT program was to develop and apply a spreadsheet-based planning
metaphor to improve the Special Operations Forces mission-planning process. The tool, TRACKER – Template
Retrieval and Adaptation of Case Knowledge for Evaluation and Reuse, stores and indexes template patterns and
employs efficient search and retrieval mechanisms to support the fast retrieval and reuse of templates. TRACKER
utilizes techniques from case-based and model-based reasoning to decrease planning time and yield higher quality
plans. A tool called the “Browser” was developed to store templates and support the interchange of TRACKER
templates with other AcT systems. During the project the TRACKER tool was used to support a number of domains. A
version of the tool called Digital Command and Control System (DC2S) was developed to support Special Operations
crisis action planning. TRACKER was also modified for application to numerous domains including travel planning,
collaborative planning, workflow management, diplomatic clearance requirements for foreign country overflights, and
incident response planning after nuclear, biological or chemical attacks.

15. NUMBER OF PAGES14. SUBJECT TERMS
Templates, Active Templates, Special Operations Forces, Smart Forms, Mission Planning, Crisis Action
Planning, Deliberate Planning, Case-Based Reasoning, Model-Based Reasoning, Collaboration, Work Flow
Management

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

60

 i

Table of Contents

1. Introduction ...1

2. Background ...1

2.1 Proposed Work ...1

2.2 Actual Work..2

2.2.1 The Early Version of the Tool...2

3. What Is a Template?..4

4. What is “Active”?..5

5. Supporting Special Operations Planning...7

5.1 Using Different Views ..12

5.2 Building Queries with the Browser ..13

5.3 Creating Reports and Customized Views ...13

5.3.1 PowerPoint and MS Word Files ..13

5.3.1.1 PowerPoint Generation ..14

5.3.1.2 Stylized Text File Generation (Warning Order, Fragmentary
Order) ...14

5.3.2 Using the Form View ..14

5.4 Using Email ..15

5.5 Connections with Other Systems/Applications ..15

5.6 Authoring New Templates..15

5.7 Collaboration ..17

5.7.1 Sending to Components...19

5.8 Generating Alerts..22

5.9 Using Scripts and Other Widgets ...23

5.10 DC2S Summary ..25

6. Other Research Experiments ...25

6.1 Workflow Development ...25

6.2 Real Time Data Collection and Updates ..27

6.3 Experiment with D3i, a Tool Developed by DARPA ..28

6.4 CommandLink ..29

6.5 DAML...31

6.6 Web Planner..31

 ii

6.7 HiCAP...32

6.8 IWARN, An AFRL Incident Reporting Environment..34

6.9 Automated Clearance Tool (ACT) ...36

7. General Tracker Discussion ..36

7.1 Using XML...36

7.1.1 Xpath Work and Scripts ..37

7.1.1.1 Slaving Template Fields to Others...37

7.1.1.2 Use of JScheme for Building Scripts ...37

7.1.1.3 Use of JScheme to Support Collaboration38

7.2 Use of Heterogeneous Data Sources...38

7.2.1 Databases ...38

7.2.2 Map Files ...39

7.2.3 Datafiles...39

7.3 Use of Websites ..39

7.4 Use of Images and Graphics ...39

7.5 Domains ..40

7.6 User Preferences ...40

7.7 Built-in Help ...40

7.8 Collaboration ..41

7.8.1 Email..41

7.8.2 Shared Drive/Server ..41

7.8.3 Peer-to-Peer Live Sharing ...41

8. The Browser ..42

8.1 Indexing Scheme...44

8.2 Fields...44

8.2.1 Node Type ...44

8.2.2 Collection...45

8.2.3 Tagname ..45

8.2.4 Attributes ...45

8.2.5 Content...45

8.3 Optimization ...45

8.4 Search Features ...46

8.4.1 Find Similar ...46

8.4.2 Did You Mean ...46

 iii

9. Conclusion...47

10. References ...48

11. Acknowledgements ...49

12. Appendix A ...50

12.1 Example Communication Protocol between Tracker and HICAP50

12.2 Tracker/HICAP Demo 1...51

 iv

List of Figures
Figure 1 - Early Travel Program ..4

Figure 2 - Early Travel Data Entry Form and Associated Data Templates6

Figure 3 - Form Generation..7

Figure 4 - Active Template Concept for Operations Order (OpOrd) Development8

Figure 5 - Communication Protocols Provided for DC2S Application..9

Figure 6 - Crisis Action Planning Checklist...10

Figure 7 - Example Mission Initialization Template..11

Figure 8 - Tasking to Components Template Example..12

Figure 9 - Browser Mission Casebase Example...13

Figure 10 - The Report View ...15

Figure 11 - The Modify Properties Menu ..17

Figure 12- Collaboration and Updates ...18

Figure 13 - Example of How Tasks are Sent to Components ..19

Figure 14 - Example Component-Abbreviated-Feasibility-Analysis Template.........................20

Figure 15 - Example JSOTF-Initial-Mission-Analysis Template ..21

Figure 16 - Example Mission Folder Structure; Note Images Folder for Storing Images22

Figure 17 - Example of the Alert Queue ..22

Figure 18 - Basic Tracker Test Template ...24

Figure 19 - Basic Tracker Computational Widgets..25

Figure 20 - An Example Workflow with Information Requirements for a Fire Department Plan
..27

Figure 21 - The Tracker Version of the Fire Department Workflow...27

Figure 22 - Heracles Weather Data Pulled From a Tracker Template28

Figure 23 - D3i API..29

Figure 24 - The Tracker/HICAP Concept Overview ...33

Figure 25 - Tracker Tax Templates with HICAP suggestions ...34

Figure 26 - EAR Templates as Developed in Tracker ...35

Figure 27 - Example User Preferences in Tracker ...40

Figure 28 - Browser with Query for Ocean against the XML Version of the CIA Fact Book ..43

 v

List of Tables
Table 1 - DC2S Authoring Widgets ...16

Table 2- CommandLink - Tracker Comparison ...30

 1

1. Introduction
Tracker is a tool that has been developed by BBN Technologies as part of the DARPA Active
Templates program. Tracker was created to allow users to define templates, “actively” use
(and modify) those templates to support some problem-solving context, and to support the re-
use of templates created by Tracker or other Active Templates tools. In the course of the
project, the tool Tracker was used to develop templates that could support a variety of problem
areas, including travel planning, tax preparation, Special Operations Forces (SOF) mission
planning, and biological-chemical incident data collection. A template “browser” was also
developed to support the retrieval and re-use of both templates and the instances that were
created in support of a given problem-solving context.

During the course of the program, many experiments were conducted with the tool. Each
experiment served to drive extensions and improvements to the Tracker tool and the associated
browser tool. This paper describes the highlights of several of those experiments. It also
highlights the main features of both Tracker and the browser.

Our experience to date indicates that Tracker can support template development and usage, but
it can also be used to define and control workflows, to support the collaborative usage and
interchange of templates from a variety of other template generating tools, and to create
(author) data entry forms for external applications.

2. Background
2.1 Proposed Work

The goal of the DARPA – AFRL Active Templates (AcT) program was to develop and apply a
spreadsheet-based planning metaphor to improve the Special Operations Forces (SOF)
mission-planning process. BBN proposed the development of a tool that would leverage
features of both case-based reasoning (CBR) and model-based reasoning. The tool, named
TRACKER – Template Retrieval and Adaptation of Case Knowledge for Evaluation and Reuse
(henceforth, Tracker), was intended to store and index template patterns and to employ
efficient search and retrieval mechanisms to support the fast retrieval and reuse of templates.
The tool was intended to include methods that would support the automatic linkage of
templates defined within Tracker to other templates and/or external processes. The tool would
support two types of users: administrative users in the development of templates that would
serve as master templates, and end users who could use the master templates to solve some
problem. The tool would also enable the users (both administrative and end users) to modify
templates and to attach new remote processes to them as needed.

All of the tools developed in the AcT program were intended to support SOF mission planning.
SOF commanders and their staff use manual means to implement complicated deployment and
employment decision processes, to force coordination, and to make plan revisions. Time is
consumed searching for, manipulating, and sharing information, thus reducing the allotted time
for making difficult decisions. Using techniques from case-based and model-based reasoning,
active-template tools were intended to decrease planning time and yield higher-quality plans.
The vision was for SOF users to modify pre-defined model templates to rapidly assemble

 2

mission plans that are based on operational orders, while accommodating continuously
changing requirements and unforeseen constraints.

Tracker was intended to support the development, indexing, storage, retrieval, reuse,
modification, and merging of templates. Subject matter experts (SMEs) from the SOF
community would be consulted to help define a case repository (casebase) of SOF missions.
The Tracker tool would be used to support the user during plan development. The vision was
that templates associated with SOF missions would be linked to other kinds of software
systems, including information systems and databases, rule and constraint-based systems,
domain models, constraint satisfaction and problem-solving systems, software agents, and
other special-purpose reasoning tools.

2.2 Actual Work

During the project we were able to achieve many of our research objectives. The Tracker tool
was used to support the SOF community through the specialized version of Tracker called
DC2S (Digital Command and Control System). A tool called the “Browser” was developed to
store templates and mission instances (missions developed with the use of the templates). The
DC2S system was able to access other software systems and databases. Additionally, the DC2S
system was demonstrated during the Millennium Challenge 2002 exercises. Section 5 of this
paper describes many of the features of this application.

Although the SOF community did not see a critical need for the casebase (for reuse of past
plans), as part of this project, we did develop the browser tool to support case-based reasoning
for a variety of other problems. For example, the initial version of the browser was developed
to support travel planning. This simple browser is now part of Tracker and any derivative
Tracker application. Later a more powerful browser was developed to support the interchange
of templates with other Active Templates systems such as D3i. This later browser (described in
Section 8) was transferred to another DARPA program called JAGUAR, where it is used today
to store executed plans and models as casebase repositories.

2.2.1 The Early Version of the Tool

One of the primary goals of the Active Templates (AcT) program was to develop tools that
were essentially free-form, but not unstructured; that could be used by the end user as a
product and could also be used by a software designer to author forms/templates. Tools
developed by the program were intended to provide an expressive structural descriptive power
that could be changed at any time; that could support the re-use of structural descriptions and
past values, and that were visually attractive and easy to work with.

The tools developed during the program were intended to manipulate and share structures
called “templates”. The templates were intended to provide more than passive interactions
between a user and the software; they would be “Active” (hence Active Templates).

Early in the AcT program each research team was directed by the program manager to build an
active templates tool prototype within 100 days. For BBN, our 100-day prototype development
goals were:

 3

• Build a set of templates that support hierarchical planning. Focus on at least two sub-
templates, e.g., synchronization of resources and asset management.

• Build a tool that is capable of using heterogeneous data sources
supporting different use cases, e.g.,

1. Information pulled from open-source Internet.

2. Information pulled from local data sources.

3. Information pulled from local LAN data sources.

4. Information pulled from other software sources.

The first BBN effort focused on the development of a template-based tool to support travel
planning. We chose this domain because it presented a myriad of challenges similar to what
military troops face when they deploy to a remote location, e.g., setting up departure/arrival
locations and times. In addition, the travel domain offered a planning problem that was
unclassified and that required little acquisition of domain data. The travel domain also offered
us the opportunities to address the goals we set for the 100-day effort. Figure 1 shows the early
user interface of the tool that was produced to satisfy the 100-day objectives. The tool, called
Tracker, provided the user with a set of templates that were designed in Java [1] by a Java
programmer. A user could then use these templates to enter data about a trip. The tool would
store the trips in a PostgreSQL database (www.postgresql.org) and the values stored in this
database could be re-used to provide values for similar trips. For example, in Figure 1, a trip is
being planned to go to a place called “Mail” from Breckenridge, Colorado. Once this trip is
created, it is stored in the database. If the traveler needs to take another trip from Breckenridge,
Colorado to this destination, the relevant travel information from the stored trip would be
retrieved from the database, thereby allowing the user to re-use the information from the
previous trip. For example, the tool could help the user make a hotel reservation by retrieving
data about the hotel that was used on previous trips and using the retrieved data about that
hotel for the new trip.

In order to specify data for an entire trip, the user of this first interface had to rely on the “next”
button (as displayed in Figure 1). This button would step the user through an ordered set of
pre-defined templates that modeled the trip planning process. Each template presented
questions to the user about their need for hotels, car rentals, airplane reservations, and other
data of relevance to traveling. This early version of Tracker provided links to external data
sources, like the Internet, in order to avail the user of related travel data such as weather
forecasts and maps. The tool also stored user preferences that the travel templates could use for
default preferences, such as requests for a non-smoking hotel room.

Although we were able to support travel planning with this early Tracker application and to
achieve many of our 100-day objectives, our work unveiled a number of research issues that
would fuel our subsequent tool development and research efforts. These research issues
included problems associated with: partial planning, the merging of plans, the validation of the
data sources that were used to populate values in instantiated templates, methods for
determining the confidence of the user in the data sources, indexing methods that could

 4

facilitate the retrieval of data for re-use in new plan or template construction, and a need to
enable the user to develop and extend templates directly.

Figure 1 - Early Travel Program

3. What Is a Template?
From a data-entry perspective, a template is a form (frame) with slots that can be filled in to
describe or model some entity (process or object). The slots of the template are composed of
attribute-value pairs that describe some object or some set of actions associated with a task or
process. For example, a template can be used to describe a person, with each attribute
specifying data such as: first name, last name, age, date of birth, etc. When the values of the
attributes are filled in to describe some particular person (personX) we refer to that set of data
values as an instance.

A template can be comprised of other templates. For example, a travel template can be
comprised of a person template that describes the person who is traveling, a hotel template that
describes a hotel, a hotel reservation template that describes a transaction between a person
and a hotel to allow the person to stay at a room in the hotel for some time period, and a
variety of other templates that describe other aspects of travel, e.g., a car-reservation template.

 5

From a more abstract perspective, a template can also be viewed as a pattern that is associated
with a class of problems. Each template has features that make it a member of a class of
templates; that distinguish it from other patterns and features; and that allow it to link (via it’s
slots) to other patterns. Templates, when designed within a problem-solving context as a
reference, can simplify problem solving in that context by (a) providing flexible ways to make
and record decisions, (b) reminding the user to perform certain tasks, (c) encapsulating
experience, and (d) constraining task specification and language.

Templates are commonly used to support data entry that is associated with some process. Data-
entry templates are often referred to as “forms”. For our work, we use “form” and “template”
as interchangeable terms. The United States tax forms are a set of well-known forms that have
been created to help people compute their taxes. The forms or detailed templates that make up
the IRS tax forms describe tasks or decision points and their alternatives. There is the main
1040 form, and then many schedules (detail templates) that are filled in as needed. The tax
templates that make up the IRS tax forms are effective because each tax form is designed to
collect data relative to some aspect of taxation as defined in a model that embodies the laws
governing tax collection. Programs like TurboTax [2] use the tax model, the data elements of
the templates, and information about the person who is being taxed to determine what forms
need to be filed. Depending on the financial situation of a person, one form (the EZ form) or
many forms are required in order for that person to file their taxes. Programs such as TurboTax
enhance the paper process by supporting the propagation of data values across fields as
appropriate. For example, in TurboTax, the name of the person filing the tax and their social
security number, once entered, is automatically propagated to all similar name and social
security data entry fields. In addition, programs such as TurboTax also provide some
computation services, e.g., adding up the values of certain fields to generate the value for
another field.

While a program like TurboTax supports the tax-problem-solving domain with a set of
templates that users can use to compute and file their taxes, the Tracker tool, developed for the
Active Templates program, does three other tasks: it uses the notion of a “domain” to support
usage across multiple problem-solving contexts; it supports the authoring of the templates; and
it supports template evolution – allowing the usage of templates (the template instances) to
influence the update of the master template. For example, if an end user could add another line
item to the tax form, Tracker can use this new field to update the master tax template.
Although that might not be desirable in a problem-solving context like taxation, it is a very
valuable feature for other data-entry problems, like those associated with the recording of
biological-chemical incidents [3].

4. What is “Active”?
One of the overarching goals of the Active Templates program was to develop templates that
went beyond static forms. The goal was to develop the templates so that they were “active”.
The “active” trait of the templates could take a variety of forms. For example, a slot could
update itself when the value of a related slot changed, e.g., as when computing a value that is
based on other input values. Another example is the auto-population of a slot or of an entire
template based on the entry of a certain value. For example, in the travel templates, when
PersonX is traveling to a specific location, other data services, such as a geographic-location
database can be accessed to provide the latitude and longitude of the destination. In our early

 6

work, a user could specify where they wanted to go through the interface, and the templates
associated with that interface would be updated. For example, Figure 2 shows the interface
along with two of the data-entry templates as they are being specified via the interface and via
calls to other services. This figure also displays a button called “select best”. If the user pressed
this button, data from the tool was passed to another tool called XpertRule [4] where it was
used to compute the best mode of transportation.

Figure 2 - Early Travel Data Entry Form and Associated Data Templates

XpertRule is an inductive inference engine with an Application-Program Interface (API) that
allows it to communicate with external programs. We used XpertRule to determine which
mode of travel a person should take to get from one location to another. The idea was that we
would use the templates to collect the data, and then pass relevant data to another program that
would make the computation. This would be analogous to the tax computation programs that
are accessed by tax-preparation programs. While the idea was good, the API between Tracker
and the XpertRule program proved to be difficult to use. But the ultimate determination to
suspend usage of XpertRule was a decision by the DARPA program manager to not use third
party software that required a license. Hence we stopped our usage of XpertRule.

By the end of the first year, we began to concentrate less on travel planning and more on SOF
mission planning. We began by generating forms that could display the data collected through
the interface and stored in the templates. Figure 3 is an example of this form. It shows values
that have been collected through data entry, values derived through calls to database sources
such as the GEOLOC (geographic-location) database (for the values of Latitude and
Longitude), values set by reference to user preferences (airline, hotel), and values derived

 7

through the Internet, e.g., weather. In order to more automatically provide data to the forms,
we developed Java code to utilize an Xpath [5] specification as a data-access interface to the
XML structure underlying our templates. This approach proved useful, so we started to rely
less on databases for storage and instead to make almost exclusive use of XML file storage.
Work with Xpath also resulted in the birth of the “browser”.

Figure 3 - Form Generation

The early browser was intended to help a user to find templates that described characteristics
about a certain entity, e.g., the skills of a particular traveler. This early browser used an Xpath
specification to allow the user to make queries against stored trips (stored as XML files) based
on attributes such as destinations, dates, activities, participants’ names, skills, etc.

By the end of the first year of the project we were able to support planning with a set of
templates and data reports. Although we were able to propagate values from the templates to
the reports, we still relied on the reports to be externally created. The next version of Tracker
added the ability of the user to author the reports (as reports are just another type of template)
from scratch; import templates from files, URLs, and database records; link external files,
URLs, and database records; and interchange templates with other developers as email
attachments. In the new version of Tracker, all non-database data is stored as XML. Because
this new version was intended to replace the application built to date, the new application also
supported a capability to read and re-format the XML data that had been generated in the
previous version.

5. Supporting Special Operations Planning
With the new version of Tracker, we were positioned for a domain application that would test
and force the tool to evolve. In the 2nd year of the program we were introduced to a group of
military planners from the Army Special Operations Battle Laboratory (ARSOBL).

 8

Interactions with the users and subject matter experts (SMEs) resulted in the generation of a
specialized version of Tracker that is called Digital Command and Control System (DC2S).

In our research we assume that templates, when filled in and linked, can represent entire plans.
When the assumption is extended to the Special Operations Forces (SOF), we would expect
that these users will start with a general model template for the kind of operation envisioned,
and then selectively link in other templates that serve not only as reminders of what is required
for a particular type of plan, but as indicators of data-collection requirements and problems or
issues to be addressed. At the start of our work with ARSOBL, we envisioned the SOF users
modifying pre-defined model templates to rapidly assemble detail templates, and in the process
receiving warnings of changing requirements and circumstances (See Figure 4). We assumed
that the SOF users might want to reuse template information from previous plans, shown in
Figure 4 as the Case-Based Reasoning (CBR) element. We also assumed that they might want
to relax the constraints associated with templates to handle new exceptions and to rapidly
respond to changes in the environment and/or to maintain an element of surprise while not
losing sight of plan dependencies.

Figure 4 - Active Template Concept for Operations Order (OpOrd) Development

We spent over one year working with SMEs from ARSOBL to develop DC2S. Through
several intense knowledge-acquisition sessions we were introduced to the deliberative planning
methods employed by the Special Operations Forces. A document (an Excel spreadsheet)
provided by ARSOBL defined the overall model and workflow associated with their deliberate
planning process. This document served as the basis for the development of a variety of
templates specially crafted to support the many special operations missions. Using this
document, and with the help of the ARSOBL staff for interpretation, we were able to develop a
set of templates to support the planning required.

A number of special features were developed to support DC2S. Although we had developed
special features to support problem-solving domains we had encountered earlier, it was not

 9

until the experience with the DC2S application that we were faced with the need to develop an
explicit “domain” concept that would support the loading of problem-specific features of
relevance into Tracker. For DC2S, this included a set of tools that allowed us to compute the
completeness of a set of forms, to generate maps in the map tool C2PC [6], to develop
specialized collaboration tools, to load in and manage a checklist, and to generate a set of
PowerPoint slides that incorporated the data as collected in the various mission templates.

During the work on the DC2S application a large number of new features were added to
Tracker. Many of these features are described in Section 7 of this paper. Although we
developed templates to support deliberate planning, we also built templates to support Crisis
Action Planning (CAP). Because of the near-real-time aspect of crisis action planning, we
introduced a peer-to-peer collaboration capability in DC2S. Figure 5 describes the
communication schemas available in Tracker/DC2S to support collaborative template
authoring or usage.

Shared drive letter,
NFS-mount, etc.

Email servers

Disk
files

host

Communication among DC2S Users

Communication with External Users and Systems

- Templates are shared between users, all edits are
dynamically sent to all others who have that template open.

- Host is like NetMeeting, but data is shared, not pixels.

- Common File Space
- For “local”, but asynchronous operation.
- Uses a shared Drive.

- Email Transmission
- For random, long-distance, and asynchronous operation

- “Merging” of templates allows for continued use by all parties.

- Netmeeting-like protocol

- Email Transmission
- Socket

Communication Methods

Shared drive letter,
NFS-mount, etc.

Email servers

Disk
files

host

Shared drive letter,
NFS-mount, etc.

Email servers

Disk
files

host

Communication among DC2S Users

Communication with External Users and Systems

- Templates are shared between users, all edits are
dynamically sent to all others who have that template open.

- Host is like NetMeeting, but data is shared, not pixels.

- Common File Space
- For “local”, but asynchronous operation.
- Uses a shared Drive.

- Email Transmission
- For random, long-distance, and asynchronous operation

- “Merging” of templates allows for continued use by all parties.

- Netmeeting-like protocol
- Templates are shared between users, all edits are
dynamically sent to all others who have that template open.

- Host is like NetMeeting, but data is shared, not pixels.

- Common File Space
- For “local”, but asynchronous operation.
- Uses a shared Drive.

- Email Transmission
- For random, long-distance, and asynchronous operation

- “Merging” of templates allows for continued use by all parties.

- Netmeeting-like protocol

- Email Transmission
- Socket

Communication Methods

Figure 5 - Communication Protocols Provided for DC2S Application

In order to better manage the crisis action planning process we developed a checklist. The
checklist serves as a type of workflow, allowing the user(s) to selectively load templates and
track their completion. An example is provided in Figure 6. When all of the “required” slots of
the template are specified and saved, the percent-complete indication on this checklist will
change to display 100%.

 10

Figure 6 - Crisis Action Planning Checklist

For crisis action mission planning, the first template that needs to be loaded is the template that
defines the purpose of the mission or basically initiates a mission. Figure 7 shows an
instantiated Mission Initialization template. Note that most of the slots/fields in this template
are annotated with an asterisk (*). In DC2S, this asterisk is used to indicate that the user must
provide data for that slot/field. The template displayed in Figure 7 has been completely
specified, as indicated by the “completion status” of 100%. Note that the classification of each
of the fields can also be specified. Note that this template contains a variety of field types, to
include text line, text field, radio button, and computation fields.

 11

Figure 7 - Example Mission Initialization Template

If we look at another of the templates available through the CAP checklist (as displayed in
Figure 8), we will see an example of how a value that was specified in the Mission
Initialization template is propagated to another related form. The values filled in and colored
BLUE (CLASS and EX/OP) were inherited from the Msn-Initialization template. The
propagation of values is achieved through a technique that we call slaving (see section 7.1.1.1
for more details.

 12

Figure 8 - Tasking to Components Template Example

5.1 Using Different Views

To support DC2S as well as some of our concurrent research interests, we enhanced Tracker to
support three different template views. Figures 8 show the template in the “Basic View”. The
Basic View simply displays the attribute-value pairs of the template as fields with values. The
user is expected to use the arrows or buttons to navigate across templates. Another view is the
“Explorer View” (See Figure 19 for an example). While similar, it provides a tree view (like
the nested folders and documents you find in “Windows Explorer”). The user can navigate by
clicking on the folders in the tree. The third view is the “Form View”. This view is intended to
display fields in some particular spatial configuration. See Figure 10 for an example.

An additional feature of the Explorer View is the search field/controls above the folder-tree.
The content of the typed-in field are used to search the content of the loaded XML template or
instance.

 13

5.2 Building Queries with the Browser

The browser capability was enhanced to support the DC2S application. While some searching
for a field or value is available in the Explorer View, the user can search for a field or value
that could be stored in any template (or for DC2S, an entire mission folder or a folder of
mission folders). In Figure 9, the user has entered a search request, (BE-Number), and the
browser returns the template that supports the specification of a BE-Number.

Figure 9 - Browser Mission Casebase Example

The user can also press the button called Next to continue searching. Each time that a search
succeeds, the value of the search will be presented in the window to the right. For example, in
Figure 9 the highlighted value in the center window corresponds to the field that contains the
value BE-Number. The value in the right window is the complete value of that field, and the
highlighted value in the left window is the template in which the field/value exists. The user
can click on the template name in the left window to open the template directly from the
browser window. With this capability, the user has the ability to use, revise, or merge the
imported template or instance

5.3 Creating Reports and Customized Views

In earlier versions of Tracker, a “report” was a customized form that was developed by a Java
programmer that could be populated with information from the Tracker templates. In DC2S, a
report can be formed from any template by changing its view to be a “Form View” or through
three types of custom reports: a PowerPoint brief, an ASCII text file, or a MS-Word document.
In DC2S, a PowerPoint brief could be generated from the template content to brief the mission
situation, and a Warning Order could be generated from the template content in the required
military format to specify mission requirements to other military components.

5.3.1 PowerPoint and MS Word Files

For many planners, the PowerPoint brief is a common way to communicate plan status. By the
end of our DC2S development period, we were able to generate a PowerPoint brief in a format
requested by ARSOBL. The PowerPoint brief could be further edited to display specific logos
or color/layouts. The user could generate a Warning Order (in its preferred format) by simply
pressing the appropriate Load button off the CAP-Checklist. When this button is pushed, a
template containing the data for the Warning Order appears. The user can then save the data as

 14

ASCII output or specify a file name for the MS format. The Warning Order could then be
emailed to any subordinate commands.

5.3.1.1 PowerPoint Generation

For any template, it is possible to generate a PowerPoint file, where each slide contains one
data field (except when that field is a table, and then because PowerPoint can create a table,
that slide will have a table). An image field will have the image inserted on the slide. All other
field types appear in the slide as text.

PPT slides were generated to support DC2S with a separate program that is written in Visual
Basic (VB). This program has clean and simple access to PowerPoint’s DLL libraries. Tracker
can call this VB program, which does most of the work to convert the content from a Tracker
template into one or more PPT slides.

There are four special PowerPoint-template (.pot) files; one is the title slide, one handles text
fields, one handles image fields, and one handles table fields. These PPT template files are
fragile due to an internal field-object-identification mechanism that the VB program and DLLs
must use. PowerPoint itself must be installed on the machine where it will be used.

A resulting PowerPoint presentation file can be viewed and modified to satisfy the desired
presentation style, e.g., logo and layout of the user. In addition, some amount of tune-up is
often required, especially for table data, because large tables often overflow the slide borders.
Note: The PowerPoint-generation feature was specifically developed to support the DC2S
effort. Many versions of Tracker do not have this feature as a standard capability.

5.3.1.2 Stylized Text File Generation (Warning Order, Fragmentary Order)

Because a template field can be a custom Java widget, that widget can do anything Java can
do. This can include generating a special output file based on the field values of the template.

For DC2S, this was done for two templates, the Warning Order and the Fragmentary (Frag)
Order. Note: This feature was specifically developed to support the DC2S effort. Many
versions of Tracker do not have this feature as a standard capability.

5.3.2 Using the Form View

In Tracker/DC2S, any template can be changed to a form by simply clicking the Form View
tab and then clicking and dragging a field/value to the location of choice. Figure 10 shows an
example. While this feature was available in DC2S, the users of DC2S tended to use the Basic
View.

 15

Figure 10 - The Form View

5.4 Using Email

Tracker/DC2S allows the user to email a template. Email was the method of choice in DC2S
for communicating Warning Orders or other order documents to subordinate commands.

5.5 Connections with Other Systems/Applications

DC2S has been configured to run with other applications and/or systems, however, DC2S did
not directly make use of this capability. Instead, collaboration methods as discussed later in
this paper were preferred.

5.6 Authoring New Templates

Our goal in DC2S was to support template authoring directly, removing the need for any
form/template to be developed in Java by a programmer. The development of the DC2S
templates prompted us to define a set of authoring features or widgets. The following table
shows a list of the features that were available in DC2S. The final version of Tracker contains
additional tools.

While these edit tools are available via pull down menus, the system can be set in the “author
mode,” where buttons that correspond to the short names in the following list are provided.

 16

Table 1 - DC2S Authoring Widgets

Button
Label

Explanation

TF: Text Field. Contains one line of text.

TA: Text Area. Contains multiple lines of text.

Lbl: Label. Contains one line of text that is not changeable by a user.

Sldr: Slider. Can be used to set a numeric value over a hi/lo range.

CB: Checkbox. Allows the user to specify true/false value.

DB: A database field. Imports a database record as though it were a sub-template.

RB: Radio buttons. Allows for the choice one of several pre-defined values.

Date: Date, displayed attractively, settable via the little triangles.

Menu: Drop-down menu. Allows the user to choose one of several pre-set values.

URL: Enter a URL in the field, click the button to show that URL in your browser.

App: Enter some info (perhaps a filename), click the button, that application program starts and
loads the entered info somehow (assumes that the application is predefined in the user-
preferences file.

Because template requirements can change with usage, an additional tool was developed to
allow template designers and end users to modify the style of a data element. The tool is fairly
simple to use and is called Modify Properties. For example, the DC2S users often change text
fields to graphics fields or vice versa as their understanding of the planning environment
matures. Figure 11 shows an example of how a DC2S user can modify the properties of a data
element. The Modify Properties tool includes a feature called Attachment. Using this feature,
the user can attach a document to a field. The Find File option allows the user to navigate their
machine for the desired attachment. Another feature allows the user to flag a field, indicating
that the field is Essential. When this option is selected, the field will be delimited with an
asterisk (*) specifying that the users must add a value.

 17

Figure 11 - The Modify Properties Menu

5.7 Collaboration

Special operations mission planning is a collaborative process. Information about the
operational area is collected by a variety of individuals who function at different operational
levels and in different operational roles. In order to support this type of plan development,
collaborative tools were provided. Because we did not use a database to support collaboration,
the prime method for collaboration required that multiple users connect to a common “host”
user, open templates and build/save data.

In this protocol, one user must act as “Host”, as with Microsoft NetMeeting [7]. Other users
will “Join Meeting” with the Host. The host may specify a password if desired. Other users
must enter the machine name or IP address, and the optional password. Following this, any
user may open a template and then designate it as “shared”.

When one of the collaboration participants designates a template as shared, it is transmitted to
the server. Each user can then choose to open this template via menu commands
(Collaborate>Open Shared Template), and select the template from the list of shared templates.
All users who have the required edit-role for any particular data field may modify values for
those fields. Note: The edit-roles were modeled on the actual command-and-control roles in
the SOF planning environment. Locking is performed on a per-field basis, and is done
immediately and automatically, and lock-release is done immediately after the field loses input
focus. There is a potential race-condition in locking: if two users try to grab the same field in
the same template at the same time, one will win and one will lose. This is network-speed and
computer-speed dependent, but for any given collaboration group, like a Mission Planning Cell
using DC2S, each player will have designated responsibilities which presumably do not
interfere with others.

 18

As a user makes data changes, those changes are communicated to the other users as follows.
During collaboration, a change by another user will cause an update button (which appears on
the right side in Basic View) to turn red. Clicking on this button will cause the display to
refresh to show any changes. If the changes were made somewhere else in the template (in a
sub-template that is not being displayed) the user will not see anything different, but the button
will be red to indicate that there is a change somewhere in the template. (See Figure 12)

USER 1 USER 2 USER 1 USER 2

Figure 12- Collaboration and Updates

Any number of templates can be open and shared at a time. While there is undoubtedly a
practical limit to this that is determined by the computer’s operating system, Tracker doesn’t
have a built-in restriction. Note, during our DC2S experiments we found that the speed of the
computers and network are the primary limiting factor.

 19

5.7.1 Sending to Components

Figure 13 - Example of How Tasks are Sent to Components

One common form of collaboration in DC2S is based on the relationship between a
commander and subcomponents. As a plan is being developed, the commander tasks
subcomponents to perform certain tasks. In DC2S, the “To” field in the template “Tasking to
Components” can be used to designate whom the subcomponents are (the values must look like
email addresses, separated by commas). Figure 13 shows an example of two subcomponents
being designated to receive the tasking via the “To” field in the template. Once the user saves
this template, these two components will receive a set of templates via email. In addition, a
folder will be created in the mission folder for the contents of their feasibility analysis input. If
email is not available in a setting, the users can access their templates through the folders that
have been created for the mission and exist on a shared drive or on a server.

The Component-Abbreviated-FA (Feasibility Analysis) is the main template that the
components will complete and provide back to the sending organization. Figure 14 is an
example of data as filled in by a subcomponent, e.g., FOB 201.

 20

Figure 14 - Example Component-Abbreviated-Feasibility-Analysis Template

With the data received from each Component, the higher commander, e.g., Joint Special
Operations Task Force (JSTOF) will use it to build the “Initial Mission Analysis”. Figure 15
presents a view of the data from two components that were tasked in Figure 13. The data
values in blue are values that were automatically derived from the templates that were filled in
by the subcomponents. Note: The general protocol is that values in DC2S that are colored blue
mean that they have been derived (slaved) from other sources.

 21

Figure 15 - Example JSOTF-Initial-Mission-Analysis Template

As the components and the JSOTF collect their mission data, they can store the data in the
folders that are associated with the mission folder that they create. Note: This mission folder
was automatically created as a side effect of instantiating a new SOF mission. Figure 16
displays an example of a mission folder. The data from the two subcomponents tasked in
Figure 13 are stored in COMP-1 and COMP-2 folders. Basically, a COMP folder is created for
each subcomponent addressed in the “To” field of the Tasking-to-components template.

Any images that the user would like to use in this mission folder should be copied or stored in
the Images folder. This is likewise true for Overlays, RFI (Request for Information), and
Sketches folders.

 22

Figure 16 - Example Mission Folder Structure; Note Images Folder for Storing Images

5.8 Generating Alerts

In most circumstances, a plan will change both prior to and during execution. Since planners
typically want to be made aware of changes, we developed a tool to support the identification
and generation of alerts. Figure 17 is an example of the alert mechanism that was developed.

Figure 17 - Example of the Alert Queue

Unfortunately, the DC2S users did not find this alert queue concept to be of use for them.
Instead, they preferred to rely both on the red highlights that were generated to correspond to

 23

some change during collaborative planning, and on the percent-complete value available in the
templates that indicates when required fields were specified.

5.9 Using Scripts and Other Widgets

Although slaving (the sharing of data from a slot to a related slot) is a powerful way to
propagate data values, scripts are used in DC2S (and in the more general Tracker) to support
database queries and more complicated computations. Scripts are based on the programming
language JScheme [8]. Various attempts were made through the lifetime of the project to make
the creation of these scripts easier for a common user. The most popular technique was to
allow the user to find a script that worked in a way similar to what the user wanted to do, and
to simply modify the arguments to suit a new problem domain. In order to support this activity,
several examples of scripts are provided in the “test template” and “basic widgets” template
(see Figure 18 and 19) that are provided with Tracker and DC2S to support authoring and
script generation.

 24

Figure 18 - Basic Tracker Test Template

 25

Figure 19 - Basic Tracker Computational Widgets

5.10 DC2S Summary

ARSOBL conducted several evaluations of DC2S and nominated it for use and testing during
the Millennium Challenge 2002 (MC02) Exercise. The MC02 experience was valuable
because it indicated that although DC2S was very powerful, it required a bit more training than
was desired by the end users. We also experienced problems with the collaboration tool. It was
slow at times and values got locked because all of the users decided to have “root” (write
controlling) access. In the end, ARSOBL opted to continue their work with another tool that
was being developed for another SOF component by other researchers in the AcT program.
This tool had less of a training curve. In a test conducted after the choice, DC2S could do all
and more than the tool that they chose. The lesson learned was that “less is sometimes better.”

6. Other Research Experiments
6.1 Workflow Development

Tracker templates can be built “on the fly” or with the support of specific data models (like the
workflow diagram displayed in Figure 20 that describe crisis action planning for a fire

 26

incident). Our experience with template development indicates that a data model based on a
combination of two input factors: (a) doctrine or protocol, and (b) domain scenarios; facilitates
the authoring of templates and increases the likelihood that the resulting system will meet the
needs of the end user. A scenario, when provided by a user, can be used to identify what
templates need to be built, how the templates should interact, and what external data sources
should be accessed in order to support information usage. A scenario can also be used to
support experimentation and testing, and it provides an environment by which to evaluate how
a set of users might collaborate with the templates.

Several small experiments were conducted to build workflow engines to support a variety of
domains. Figure 21 shows one of the workflow templates built in Tracker to support the Fire
Department workflow that is pictured in Figure 20. Other workflow templates were developed
to support other domains, e.g., travel planning.

 27

Figure 20 - An Example Workflow with Information Requirements for a Fire Department Plan

Figure 21 - The Tracker Version of the Fire Department Workflow

6.2 Real Time Data Collection and Updates

We conducted an experiment with an online service provided by Heracles (another AcT tool
that was developed by researchers at the Information Sciences Institute [9]). During this
experiment, we built an interface to Heracles to collect real-time data that was available
through the tool. We were able to build special fields that called Heracles to obtain information

 28

that augmented data collected in DC2S templates. For example, in Figure 22, you can see
some standard textual fields used to support the description of weather in a DC2S template.
You will also see several additional fields, e.g., Heracles Today’s Winds, Heracles Visibility,
and Heracles Today’s Hi/Lo, that derive their values through a call to the Heracles tool.

Figure 22 - Heracles Weather Data Pulled From a Tracker Template

6.3 Experiment with D3i, a Tool Developed by DARPA

D3i [10] is another Active Templates tool that was developed as part of the DARPA AcT
program. The API for communication between D3i and Tracker is displayed in Figure 23.

 29

Figure 23 - D3i API

The idea behind D3i is that the user should be able to find and re-use templates or template
fragments from a variety of AcT template tools. D3i uses a database to store templates and
instances. During our experiments with D3i, we extended our database capabilities to read
and write to the D3i database and to share both instance and template data. This work also
propelled us to further develop the “browser” tool in order to focus on better ways to
perform searches of both structured and unstructured data. Several members of the team
investigated related research topics in this area, including issues related to mining XML
data, and related to various browsing techniques that are currently available for large
amounts of XML data. One method involves XForms [11], a W3C specification that is part
of Office 2003, and evidently the basis for MS InfoPath [12], a Microsoft capability that
mirrors a lot of the Active Templates research ideas/capabilities. The result of these
investigations was the development of a more powerful browser that ran independent of
Tracker. This independent Browser could interact with Tracker or other Active Template
applications (e.g., D3i and CommandLink) through a copy/paste method that allowed a user
to find templates and copy them from one AcT application into another.

6.4 CommandLink

CommandLink is another of the AcT tools that we conducted experiments with. It was
developed to support a different set of SOF users, and it has many of the features that Tracker
has. BBN conducted a comparison between CommandLink version 1.4 and Tracker version
0.74 during this project. Over time, efforts were made to interchange templates with

 30

CommandLink, and as a result of the comparison, many enhancements were made to both
tools. The following table describes the differences and similarities between these two tools.

Table 2- CommandLink - Tracker Comparison

 TRACKE
R

COMMANDLINK

Create New Form YES YES

Open Existing Form YES YES

Save Form YES Done automatically

Entry/Text Field YES YES

NumberEntry/Integer YES YES

RadioButtonSet YES YES

ComboBox/Menu YES YES

Text Area YES YES

Scale/Slider YES YES

CheckButton/CheckBox YES YES

CheckButtonSet ??? YES

StopLight NO YES

StopLightSet NO YES

Field for Details
(Childern)

YES NONE – There is no notion of a hierarchy of forms

Label YES Labels are added when attributes are added – cannot be
added separately

Date Field YES NO

URL Field YES NO

Database Link Field YES NO

Table Field YES NO

Application YES NO

Action YES NO

Custom Widget YES NO

Image YES NO (to be added in version 2)

Instance YES NO

Remote XPATH YES NO (to be added in version 2)

Remote DB YES NO (to be added in version 2)

Silk Script YES NO

Slave/Linked Source YES YES

Table YES NO

 31

 TRACKE
R

COMMANDLINK

Template YES NO

Save Form as… YES NO

Save Form as Pattern NO YES

Sharing of Forms YES YES

Email Form YES YES but only to people connected to the router at that time

Edit User Preferences YES Yes but limited

Print Form YES NO

Close Form YES NO Just “X”

Quit YES NO Just “X”

Show User Action History YES NO

6.5 DAML

Ontologies are a descriptive approach for specifying relationships between things
(information). Relationships are often not hierarchical, so an ontology defines a graph rather
than a tree. The DARPA Agent Markup Language (DAML) program was established to
develop tools that could create and utilize ontologies [13]. During the course of the DAML
program, the Ontology Web Language (OWL) emerged [14]. Both DAML and OWL are based
on XML. We conducted several experiments to use Tracker to read, write, and generate
DAML/OWL data files. Tracker was modified to follow RDF links in addition to Tracker’s
own template links. As a result, Tracker can open and display a DAML/OWL/RDF file, and
the internal links can be navigated in just the right way (even when that link points to another
DAML file on a web-server—a click on the link button opens that other DAML file).
However, the graph structure of DAML/OWL does not typically lend itself to clean on-screen
presentation in Tracker’s usual style, so a DAML/OWL graph can be very difficult to
understand when viewed in Tracker. We realized that a better approach would be to create a
custom view for DAML/RDF data, or a custom widget, but we really had no need to do so
because there was no application requiring it. Instead we developed a tool to export Tracker
templates in a number of XML styles (using stylesheets), and these exported files have been
successfully used as input to DAML/OWL based systems, such as the ACT Foreign Clearance
System (described below).

6.6 Web Planner

The DARPA Adaptive Course of Action (ACOA) program’s Web Planner is a tool that creates
instances of planning document structures, which are very much like Tracker templates. At one
point as an experiment we duplicated a portion of this structure as Tracker templates. This
work was never finished. It was done as an experiment to determine how much effort it takes
to create (or duplicate) structures like those in Web Planner with Tracker. Note: Web
Planner’s “templates” are similar in structure to Tracker templates, with nested substructure,
pick-lists, text fields, etc.; hence, constructing Web Planner templates in Tracker took little
time.

 32

6.7 HiCAP

HiCAP is another of the AcT tools. It is an interactive case-based tool that supports planning.
HiCAPs planning module includes a case-base and a generative planner. The generative
planner in HiCAP is provided by the planner SHOP [15], while the case-based planner is based
on the Navy Conversational Decision Aids Environment (NaCoDAE) [16]. We conducted an
experiment to use the planning tools of HiCAP to provide suggestions on how a user should
select and fill out a set of templates. For this experiment, we began with the IRS tax-forms as a
domain model. Figure 24 shows the concept proposed for communication between Tracker and
HiCAP. Figure 25 shows Tax Templates provided by Tracker, and suggestions provided by
HiCAP.

Our goal in this experiment was to demonstrate how suggestions provided to the DC2S users
could enhance the usage of the tool. While we were able to demonstrate that Tracker could
work with a planner to better support an end user, we were not able to encourage the ARSOBL
SOF users to support this extension.

 33

Initial Tracker/HICAP Interactions

HICAP

HTE

NaCoDAEUser

Slot values

Suggestions

Templates

Tracker

Suggestions
Window

Template
Selections,
Slot values

Suggestions

Suggestion types:
1. Open a <specific> template
2. Switch to another <specified> template
3. Close a <specific> template
4. Insert a <specified> value for a <specific> slot

Suggestion types:
1. Open a <specific> template
2. Switch to another <specified> template
3. Close a <specific> template
4. Insert a <specified> value for a <specific> slot

Figure 24 - The Tracker/HICAP Concept Overview

 34

1 -Initial Data Provided By Tracker User

3 - User Executes HICAP Suggestion

Using Suggestion from HICAP

2 - HICAP Suggestion

Figure 25 - Tracker Tax Templates with HICAP suggestions

Two demonstrations of this work were made. One of the demonstration scripts is provided in
Appendix A, along with the API that was used to facilitate communication between HiCAP
and Tracker.

6.8 IWARN, An AFRL Incident Reporting Environment

The Installation, Warning, and Reporting Network (IWARN) is an AFRL incident reporting
environment. Developers of IWARN’s Digital Dashboard tool expressed an interest in using
Tracker to support the development of templates for incident collection. IWARN is a suite of
information technologies that fold chemical and biological sensors, networks, command and
control, situation awareness, Nuclear-Biological-Chemical (NBC) modeling and analysis, and
data fusion into a seamless information and decision-support system. The technology
underlying IWARN provides the means for fusing information from the many passive, active,
and human data sources that are associated with the detection and tracking of chemical and
biological attacks, both overt and covert.

In order to provide decision makers with timely situational awareness, IWARN leverages the
concept of a Digital Dashboard. Digital Dashboards are often used to gather information
about a problem and provide a set of visualization methods that describe the state of a problem
domain at a given time. In IWARN, a variety of Electronic Attach Report (EAR) forms are
provided to support data collection. IWARN uses a database for storage of EAR data.

 35

In order to support the usage of Tracker developed templates by IWARN, we developed
several new template widgets to support database access (See Figure 23). We also investigated
integration approaches, in particular the use of Tracker as a cell in the IWARN dashboard and
the use of Tracker as a callable product. Our research indicated that although the tighter
integration achieved by using Tracker as a cell was most desirable by the IWARN researchers,
Tracker was developed to run as a standalone callable product. Work beyond the scope of the
experiment would have been required to achieve greater integration.

Figure 26 - EAR Templates as Developed in Tracker

During our experiment with IWARN, we were able to replicate several of the EAR forms, and
we discovered that by providing the specific usage of database tables we could communicate
with the IWARN database without corrupting it with modified templates. To handle template
modifications and extensions we developed a method to store additional fields in a table. This
table would then be provided to the IWARN database administrator, who would then
determine when frequently added data fields should result in IWARN database schema
updates.

We also discovered that Tracker templates could be integrated more easily into other software
if the authoring widgets were separated from the core Tracker code. To allow the proper
sharing of widgets, a widget library with a common API would need to be defined. This API
would allow the development of multiple platform specific libraries without the need to modify

 36

the core of Tracker. Note: any future extensions to Tracker would probably include the
development of this API.

6.9 Automated Clearance Tool (ACT)

The Automated Clearance Tool (ACT) is an agent based tool that uses semantically annotated
data sources to compute the lead time required for AMC to obtain diplomatic clearances for
their missions [17]. Most of the data entry/processing forms that are available in ACT were
developed in Tracker. The use of Tracker was found to substantially reduce the knowledge
engineering and GUI design stages of the ACT development. The knowledge engineer was
able to use Tracker to rapidly author a set of forms that mimic the paper forms used by the
target end users at the Air Force Air Mobility Command (AMC). Tracker was used to
interactively develop several forms/templates with select subject matter experts and end users.
This provided quick feedback on form design. Using Tracker we were able to demonstrate to
the end users how software agents in ACT could be used to propagate data values among
related forms and to enforce constraints on information element specification; e.g., date-time
specification. By using Tracker we were also able to quickly develop some prototype forms-
based GUIs, presenting them to the end users and subject matter experts for review during
knowledge acquisition sessions. Once the data entry form designs were accepted by the end
users, we were able to use Tracker to export the developed form(s) to ACT for continued
integration with ACT ontology and software-agent modules. Because of the success of this
approach, we added a tool bar to ACT to directly support the import of Tracker developed
templates [18].

7. General Tracker Discussion
7.1 Using XML

XML is an excellent method for organizing a lot of information. It incorporates clean and
simple semantic labeling and a hierarchical structure that exactly captures how many pieces of
data relate to each other. The structure that XML describes is a hierarchical tree, exemplified
by the structure of a book: A book has one or more chapters, a chapter has one or more
paragraphs, a paragraph has one or more sentences, a sentence has one or more words, a word
has one or more letters. In a physical book, there is no sharing of any of the structure, although
it is a certainty that most of the words will appear in all the chapters, and some sentences might
get repeated.

A tree structure also describes other hierarchical relationships, such as the military chain of
command and personnel rankings (and similar relationships in many other organizations); in
fact, anything that involves taxonomy-like categorization fits a tree structure quite well.

Some information does not fit into a tree structure well, and for this kind of data, XML
provides at best an approximate solution. To continue the book example, a sentence also has a
subject, predicate and an optional object. But subjects, predicates, and objects (S/P/O) do not
always occur in that order, so in some cases it might be important to capture the S/P/O
structure separately from the text of the sentence, which leads to a need for sharing of some
sort, via a workaround that is an application-specific description of how non-tree data is
represented in a tree.

 37

Information is often shared across related documents, or is logically connected to other
documents: the World Wide Web is the largest and most well known non-tree-structured
collection of data. Links can go from anywhere to anywhere else.

Tracker incorporates several linking strategies. Note that the behavior of a Tracker link is more
complex than links on a web page. Tracker links actually show the linked values, in addition to
the link. Individual data values can be aggregated without the user having to jump from one
source to another.

Unlike other XML-based concepts, Tracker does not have, use, or require a Document Type
Definition (DTD) or schema. This allows Tracker templates to be completely free form, and
can result in semantically rich XML. It also allows Tracker to open any XML file. Note:
Tracker will do a better job at presentation if the nodes have certain attributes that describe the
presentation format, but none of them are required; a completely unspecified node will present
as a simple JTextField if nothing else.

7.1.1 Xpath Work and Scripts

Xpath is a specification of, and Xalan is the code library for, retrieving individual node values
from XML documents. It explicitly supports the tree-structured content that comprises an
XML data file. Consequently it is ideal for Tracker’s use, and appears extensively in template
field definitions.

Any template data field can have a value derived directly from another field in the same
template or another template. XPath is the specification for searching the XML to find that
specific value. There is a “wizard” tool in the “Modify Properties” dialog for each template
field, which steps the template author through finding a field’s Xpath. Tracker allows the same
random (and possibly circular) connectedness that the Web allows. The author is not prevented
from making a circular link chain, but there is no infinite loop possible in a computed field
value unless the author introduces it; Tracker processes script fields one at a time, and they are
all single-depth computations (i.e., an Xpath grabs a value, not a computation to perform).

7.1.1.1 Slaving Template Fields to Others

Tracker templates can refer via XPath to other fields in the same template or fields in other
templates. When the field is in the same template, this is called slaving: one field’s value tracks
another field’s value at all times. The Tracker interface provides multiple methods for setting
and displaying slaved values.

7.1.1.2 Use of JScheme for Building Scripts

Early during this project it was clear that there were going to be data fields whose value would
be a computed value, and that there would be infinite variation on what those computations
should be; therefore Tracker needed a scripting language wired to the fields. At the same time,
it needed to be something fairly compact, and have clean access into Java.

JScheme is the scripting language we adopted for Tracker. It is a Scheme RSR4 interpreter
(minus continuations) written in Java. It also has full access to Java itself, and is capable of
doing anything Java can do. This means the scripting language is quite powerful. A script for a

 38

field can be the simplest of code fragments: (+ 3 4), and the value “7” would be shown as the
field value.

A script can be far more complex than that, referring via XPath to other fields in the template,
testing values and branching on the results, combining values into a more descriptive result,
etc. For example, some of the DC2S templates have scripts up to about 20 lines long, which
refer to other fields, and produce a variety of answers on screen depending on what values are
found. The possibility of a “formula” language, which would be a simpler form of scripting,
was discussed off and on, but never implemented. For comparison, this would be like the
formula language in Excel versus the Visual Basic scripting capability.

Rules and constraints are specialized variations of scripting. If-then rules could actually be
implemented as very small templates; constraints probably could also, to an extent, but would
probably lose some of their expressive power.

7.1.1.3 Use of JScheme to Support Collaboration

We also experimented with the use of JScheme to enhance our collaboration technique. The
approach was to use the Jabber [19] pub/sub environment and JScheme to send messages in
Jabber from inside Tracker. The idea was that each Tracker system would register to a Jabber
server and be used as follows:

• Template server – One Tracker system is designated the template server. To view a
template, it sends a message to subscriber Tracker systems containing the template.
Each subscriber can send the template back once it is updated.

• Collaboration – Each Tracker user would join the active templates chat room, which
would broadcast messages to everyone – similar to what Tracker does now.

• Diverse tool access – Various Active Template tools such as Tracker and D3i could
exchange information and provide services to each other.

7.2 Use of Heterogeneous Data Sources

7.2.1 Databases

Databases are well-structured repositories of information. They are not hierarchical in nature
(although an application-specific interface can make one appear to be so). Our experiments
with Tracker indicated that access to the information stored in databases, either at the template
level or at the slot level, was of critical importance to most users.

Tracker supports several database features that allow the user to read/write to a database.
However, Tracker can also auto-generate a template that contains the data fields associated
with a database. The auto-generated template can then be saved and used as the basis for
further template developed, or generated as needed to get real time database updates.

There are several approaches to using databases in Tracker and those that have been
implemented were driven by our experiments. The only requirement in Tracker for the built-in
database assessors is that the database be accessible via JDBC/ODBC. In Tracker, a single data

 39

value can be read from a single record in a database table. An entire record can be read, and
will appear to be a flat template (it is in fact converted to XML at read time, and the XML is
then parsed into the equivalent template structure).

7.2.2 Map Files

Tracker has been developed to use the OpenMap mapping tool, and for our work with
ARSOBL, to use the mapping tool called C2PC. Geographical locations, as well as graphical
icons and sketches can be displayed directly from a template.

7.2.3 Datafiles

Most of the data in Tracker is stored in files. Users can create templates to support a particular
problem-solving domain and create instances from those templates. Both the templates and the
instances are generally stored as files, and can be managed much the same way as other files
are managed. For the DC2S problem domain, we created special functions that supported the
creation of a crisis action mission folder from a set of templates. The user could then manage
the instances using the common PC operating system options.

7.3 Use of Websites

There are two possible uses of websites in Tracker. The first is as a repository of templates,
just as the web is a repository of web pages. (This can include being a repository of things used
in templates that are themselves not templates, such as images.) The second is as a source of
other data, like a database, or an XML file of some sort that is going to have a value extracted.

Templates are intended to allow data to flow in both directions: open an empty one, enter data,
and save the result. On the other hand, web pages are generally unidirectional, allowing data to
flow from the server to the client (usually by means of a browser). This means that without
some custom programming on the server side, Tracker cannot write a template back to a web
site.

While a web page might contain interesting content (at least as it is visually presented in a
browser), because not all web pages are written using XML-compatible code (XHTML), it
may be impossible for Tracker to find such a page because Tracker requires the data to be
formatted as XML. In addition, even XHTML might be so semantically empty that correctly
extracting the correct value could be quite difficult, exceeding the ability of the XPath wizard.
Therefore, any use of Tracker with a website-based data repository must take into account this
requirement for semantically rich, XHTML-based web pages.

7.4 Use of Images and Graphics

If a data field is to contain an image as opposed to a text value, the XML node’s actual value is
the pathname to that image file, but the presentation in the window is the image itself. There
are six kinds of images possible: GIF, JPG, TIFF, BMP, PNG, and SVG (Scaleable Vector
Graphics). The SVG image type is actually a vector picture, while the other types are bitmaps.
GIF, JPG, and PNG can have a pathname value that is actually a URL, and load an image from
the web. Image files for the DC2S templates were typically images of target areas on the
ground, like satellite photos, or images of targets.

 40

7.5 Domains

A Tracker “Domain” is an XML file (i.e., just another template) that captures aspects about a
conceptual area common to all templates in that area, but is not explicitly part of any of those
templates. It typically specifies script code files, Java code files, template-specific
modifications to the menu-bar, domain-specific help, and the loading of custom widgets.

7.6 User Preferences

Web browser programs have a number of user-specific behaviors that the user can control that
are independent of any and all templates. These are captured as User Preferences.

Tracker has the same concept, handled in essentially the same way, except that Tracker’s User
Preferences are just another template (with a specific behavior unique to it). As just another
template, the user-preferences (See Figure 24) can incorporate any amount of information that
is not actually part of the built-in user preferences, and other templates could use that
additional information. For example, the Tracker user preferences can specify preferred
browsers, but also a preferred hotel.

Figure 27 - Example User Preferences in Tracker

7.7 Built-in Help

Tracker has built-in help like most modern software. Instead of a set of HTML help pages or
an Acrobat file, Tracker’s help was written using Tracker, and is simply another set of
templates. A number of screen-capture pictures are included in the Help system as examples.

 41

7.8 Collaboration

Tracker provides several approaches to collaboration with templates. Each is discussed in this
section.

7.8.1 Email

A template is a text file containing XML. As such, it is something that can easily be emailed
between users. One user could fill in one part, email it to another user who could fill in another
part, send it to someone else, etc.

This is a slow, asynchronous method, but nearly everyone has and can use email, so Tracker
includes the ability to send a template as an email attachment to someone else.

Tracker includes a capability to create an address book for this purpose, but does not have a
way to use or import an address book from another application.

7.8.2 Shared Drive/Server

In a domain with linked templates, all templates need to stay together in order for those links to
work their best. Email is not an effective solution for this, because each template in effect lives
alone.

One solution is to keep each group of linked instances together in the same folder all the time,
but this means that all users of those templates must have access to that folder. This leads to
the creation and use of network-shared folders. Depending on the domain and how many
instances are necessary, it is probable that some user groups will need to establish a shared
folder explicitly for their use, and do some other customization of Tracker to support this
effectively. This is what was done for the DC2S domain implementation. There are a number
of sub-folders that break down Mission Planning into Crisis and Deliberate, and break those
two down into Direct Action (DA), Foreign Internal Defense (FID), Surveillance and
Reconnaissance (SR), and Unconventional Warfare (UW). In collaboration experiments with
DC2S, the entire folder structure was shared over the network.

7.8.3 Peer-to-Peer Live Sharing

Tracker’s collaboration session has more in common with network-based games than it does
with something like NetMeeting. In NetMeeting, only one person can have control over the
session at a time because pixels are being shared rather than data content. In a network game,
only data is shared because in general those kinds of games are high-speed action games where
all players have to act/react simultaneously, and the overhead for network traffic any greater
than the few bytes necessary to state position and motion vector is too much. A live
collaboration session in Tracker is based on a hub/spoke client-server implementation. One
machine acts as “meeting host”, the others connect to it as participants. Any one can open a
template and share it. That template is then available to everyone else to be opened and worked
on.

 42

Values for data fields are transmitted from the user making a change to all other users. This
way, all users are kept current with the latest entries. Everyone can work on the same template
at the same time—fields are locked at the individual field level, and the lock is released when
that user “changes the input focus”, which means clicking on some other GUI widget.

8. The Browser
There are two versions of the “browser” that were developed to support Tracker. One is the
browser that is displayed in Figure 9. That browser can be called from inside Tracker and only
works with Tracker. It is lightweight and very useful for managing templates and instances that
have been developed using Tracker.

However, in our experiments with other Active Templates tools we found that we needed a
more powerful browser, one with more advanced search features that would allow the user to
construct a repository using XML files from any source. For example, Figure 28 shows the
interface of the more powerful browser. Note that a query has been entered in the Search
option. This particular repository is composed of the CIA Fact Book country data. The
browser will highlight the first match in the pane on the left, and specify the number of hits in
the pane on the lower right. The user can choose to view the returns in detail. In this case, the
user is looking at detailed data about the “Atlantic ocean”. The tool also supports advanced
search, such as a search for a phrase or for a complicated match expression.

 43

Figure 28 - Browser with Query for Ocean against the XML Version of the CIA Fact Book

The stand-alone Browser was developed to search a collection of documents for items relevant
to some set of query terms. Search hits might reference entire XML documents or individual
XML elements relevant to the query. In Figure 28, the search for “ocean” returns several XML
country documents as well as individual XML elements such as the text in the “background”
for the Atlantic Ocean. In developing the browser we incorporated information retrieval
technology currently used by web search engines such as Google, Yahoo, and Teoma.

The browser search capability was implemented using the Lucene open-source search engine
developed under the Apache Jakarta Project. Lucene supports full-text search, and its plug-in
based architecture makes it adaptable to a variety of applications. The Lucene search engine
employs a vector space retrieval model with a similarity function based on term frequency and
inverse document frequency metrics. For a description of these metrics, see Jockman, et al.
[20].

The application of Lucene to searching XML documents in the browser’s repository was
adapted from work published by Jockman, Kimber, and Reynolds of Isogen International. This
section outlines the integration of Lucene with the stand-alone browser application and
includes discussions of the document-indexing scheme, the fields indexed for each document,
an optimization applied to the indexing process, and some search features.

 44

8.1 Indexing Scheme

A Lucene Document contains a collection of fields, each consisting of a name and a value. The
value portion of each field contains the data to be indexed. A Lucene index contains all unique
Terms extracted from the value portion of each field in each Document that has been indexed.
Each Term in the index contains references to the Documents it appeared in, the number of
times it appeared in each document, and the position at which it appeared on each occurrence.
The textual data of each field is passed through an Analyzer that enforces a policy for
extracting Terms. The Analyzer implemented for the browser search application performs
several filter operations. The Analyzer starts by removing apostrophe characters from
possessive constructs and periods from acronyms in order to normalize the text for the next
step. Then the Analyzer converts the characters in each word to their lowercase form and
filters certain words based on a “Stop Words” list. The “Stop Words” list contains words such
as “and”, “the”, and “but” that appear very frequently in text and are unlikely to be used as
search criteria. The Analyzer applies the “Porter stemmer algorithm” [21]∗ to extract the root
of each word to be stored as a Term in the index.

The key to adapting Lucene to operate on a specific document type is defining how that
particular document type will be represented as (or decomposed into) Lucene Document
objects. In order to take advantage of the structure inherent to XML documents it was decided
that each document would be indexed at the element level. A DOM parser is used to extract
each individual element from an XML document and index it as a separate Lucene Document.
In order to capture relationships among elements within the same document, the full content of
each document is also indexed as a Lucene Document. The fields extracted from each element
are described in the next section.

8.2 Fields

This section describes the fields that are indexed for each document and associated XML
elements added to the browser’s repository.

8.2.1 Node Type

The node type field indicates the type of content associated with each Lucene Document. If the
Lucene Document represents the content of an entire XML document added to the repository,
then the node type is set to “ALL_CONTENT”. If the Lucene Document represents the content
of a single XML element, then the node type field is set to “ELEMENT_NODE”. This field is
displayed in the search results to indicate whether a hit occurred on a single element or on a
full document. If the indexing scheme were extended to separate XML content into additional
DOM node types, then this field could be used to indicate the node type represented by each
Lucene Document.

∗ Stemming is the process of applying an algorithm to extract the root word of a search term. The root word can
then be used to derive additional search terms. For example, it may be desirable for the search engine to return
documents containing the term “stemming” or “stemmed” if the user enters the term “stemmer”. The browser
search implementation makes use of the “Porter stemmer algorithm” when indexing documents such that all
variations on the same root word get linked to the same term in the search index. The same stemming algorithm is
also applied to all search terms of a query.

 45

8.2.2 Collection

The collection that a document belongs to is included as a field in each Lucene Document
derived from the XML document. This supports structuring a search on documents in one or
more collections. The basic search function available from the browser frame appends “AND
collection:<current collection>” to the entered query to restrict results to those that belong to
the collection that is currently loaded in the browser. The advanced search interface currently
supports selecting one collection or all collections to establish the context for a particular
query. A user familiar with the query syntax could construct a query that considered
documents in any combination of collections.

8.2.3 Tagname

If the Lucene Document represents an XML element, the tagname field contains the name of
the tag enveloping the element. The tagname field supports limiting a search to only the
elements of a certain type. The advanced search interface includes a “with the TAG” field for
limiting a search in this manner. Use of the “with the TAG” field translates to adding “ AND
tagname:<user_supplied_text>” to the other search terms in the query.

8.2.4 Attributes

If the Lucene Document represents an XML element, the attributes field contains the name and
value pairs of each attribute included in the element. A space character is inserted between the
name and value of each attribute so that the tokenizer that feeds the indexer with words does
not treat the attribute as a single term (i.e., the “=” character that typically delimits a name and
value is replaced with a space). The attributes field allows a user to limit a search to elements
containing a specific attribute name and/or value. The “Advanced Search” interface includes a
“whose ATTIBUTES contain” field for limiting a search in this manner. Use of the “whose
ATTRIBUTES contain” field translates to adding “AND attributes:<user_supplied_text>” to
the other search terms in the query.

8.2.5 Content

Depending on the “Node Type”, the content field contains either all text included in an XML
document or all text between the start and end tags of an XML element. The content field is the
field that is searched by default in all queries executed from the various search interfaces in the
browser. In the case of an XML element, the content field also contains the contents of the
tagname and attributes fields as well as the tagnames of each ancestor element. The content
field in each Lucene Document also contains the name of the repository document from which
it was derived. If the document name contains information that distinguishes it from other
documents (which is usually the case), then it makes sense to support limiting a search to the
elements within a single document by including the document name as one of the search terms.

8.3 Optimization

The Lucene search engine relies on a file-based index. While the developers of Lucene have
produced a file-based scheme that is efficient for search tasks, producing the index can be very
I/O intensive. That is, every document indexed by the system results in several “writes” to a
file. Our indexing scheme significantly taxed the system because we index every element of an

 46

XML document as if it were a separate document. To mitigate this, we added a memory buffer
to the indexer such that several documents could be indexed (and stored in memory) before
performing a write to the index file. The indexer is currently configured to support 10000
“documents” (i.e., documents and document elements) in the memory-based index before
updating the file-based index. This optimization resulted in a significant decrease in the time
required to index a collection of XML documents. For example, the CIA Fact Book collection
took about 30 minutes to index prior to the optimization. After the memory buffer was added
the indexing time decreased to just less than 3 minutes.

8.4 Search Features

One of the goals for the search component was to incorporate some of the technologies
currently employed by some of the more popular web search engines (e.g., Google, Yahoo,
Teoma, etc.) to improve the search experience. This section provides some detail on a few of
the features included in the browser search mechanism.

8.4.1 Find Similar

The “Find Similar” feature is available as a hyperlink option on each of the hit descriptions
displayed in the search results. “Find Similar” attempts to extract the terms that most uniquely
identify a document and then construct a query based on these terms. The query is constructed
by connecting the top terms with the OR operator. The top terms are derived by sorting the list
of document terms in descending order by the weight of each term. The weight is computed by
multiplying the normalized term frequency by the inverse document frequency. This sorting
scheme attempts to identify the terms that appear most frequently in the selected document
while appearing least frequently when considered across all documents. The “Find Similar”
implementation currently selects the top five keywords from which to form a new keyword.

The main drawback to the current implementation of “Find Similar” is that it often results in a
large number of hits. One of the contributors to this problem is the use of the OR operator to
connect the derived search terms. Only one of the search terms has to be found in a document
for it to be considered “similar” – this is not quite ideal; however, using the AND operator is
not likely to return many (if any) results. Another contributor may be the inclusion of the
filename in the content file of each indexed document. Because a filename only exists in
documents derived from the file having that name, it is likely that the filename will bubble up
as one of the terms that make the document unique among all documents in the repository.
When a query is constructed using the filename as one of the search terms, the search engine
generates a hit for every document/element derived from that file.

The “Find Similar” feature seems to work best on very distinct elements, for example, running
the routine on the HIV infection rate element of a country in the CIA Fact Book retrieves the
same element for all other countries. The current implementation should be considered
experimental.

8.4.2 Did You Mean

The browser search capability includes a “Did You Mean” feature that attempts to catch
misspellings by suggesting alternative search terms derived through a multi-stage heuristic. For
each search term entered by the user, the search engine computes the Levenshtein distance [22]

 47

against all terms currently in the index. Potential alternatives must appear in at least one
document and must have at least the first two letters in common with the word that the user
entered. Of the terms that meet these requirements, the one with the smallest Levenshtein
distance is reported as a possible alternative to the user.

The process used to find alternate terms is equivalent to the query expansion that occurs in a
fuzzy search. If nothing is found in the index, then a dictionary of common terms is consulted
to find possible alternatives. The browser currently utilizes the Jazzy open-source spell-
checking library [23] to perform the dictionary check. Jazzy also makes use of the Levenshtein
distance to suggest possible alternate terms.

9. Conclusion
Like Tracker, many of the AcT tools [24] were developed while XML and tools to create, edit
and work with XML were also being developed by commercial vendors. Although some of the
capability that Tracker was developed to provide are now readily available in tools like XML-
Spy (http://www.altova.com/), the intent of the Tracker tool was to use forms to dynamically
support real-time problem solving.

Forms-based tools abound in many environments and are primarily used to collect data. What
we have demonstrated with Tracker, and with many of the other AcT tools, is that by making
the forms “active” additional computational power is provided. For example, today in many
command centers planners enter data in one form and then manually re-enter it into the
PowerPoint briefs and other military command documents as needed. With the DC2S
experiment we saw that the PowerPoint briefs can be created automatically using the planning
data. As the planning environment changes, so do the briefings. In the IWARN experiment, we
saw that by using Tracker to create the EAR forms, the end user could have the flexibility to
add new fields to describe some unanticipated anomaly associated with a pre-defined incident.
In this way, the forms would be able to grow and mature to meet the ever-changing needs of a
dynamic environment.

Creating forms can be tedious, but with the authoring capability of Tracker we have been able
to quickly develop forms-based interfaces for other applications such as the ACT tool
described in this paper. Although we never really adapted Tracker to handle OWL data, we did
demonstrate that by referencing an OWL ontology while developing the fields of a Tracker
template, any application using those OWL ontologies also could quickly use the templates. In
retrospect, one of the most powerful aspects of Tracker was the fact that it could be used to
create forms-based interfaces that required an XML structure.

Although Tracker and other AcT tools like CommandLink could be used to develop and
manage workflows, the only actual usage of this capability was through the CAP Checklist that
was developed to support the SOF DC2S application.

Finally, our original intent was to develop a tool where we could dynamically link-in templates
that were stored somewhere, and rapidly use them in a new context. The experiments with D3i
and the resulting development of the Browser were examples of this capability. Currently the
Browser is being used to support repository development in the DARPA JAGUAR program,

 48

and it is in that context that we continue to pursue the linking of templates and instances with
each other.

10. References
[1] Java: http://www.sun.com/java/

[2] TurboTax: http://www.turbotax.com/

[3] Mulvehill, A., Reilly, J., and Krisler, B. “Flexible Data Entry for Information Warning
and Response Systems”, presented at the International Command and Control Research
and Technology Symposium (ICCRTS—05), June 2005.

[4] XpertRule: http://www.attar.com/index.htm

[5] Xpath/Xalan: http://www.w3.org/TR/xpath

[6] C2PC: http://www.globalsecurity.org/intell/library/reports/2001/compendium/c2pc.htm

[7] NetMeeting: http://www.microsoft.com/windows/netmeeting/

[8] JScheme: http://jscheme.sourceforge.net/jscheme/mainwebpage.html

[9] Ambite, J., Knoblock, C., Muslea, M., and Minton, S., “Conditional Constraint Networks
for Interleaved Planning and Information Gathering”, IEEE Intelligent Systems, pp. 25-
33, March/April 2005.

[10] Dyer, D., D3i Software, http://activecomputing.org/prototypes.html

[11] XForms: http://www.w3.org/TR/2003/REC-xforms-20031014/

[12] InfoPath: http://office.microsoft.com/en-us/FX010857921033.aspx

[13] DAML: http://www.daml.org/

[14] Smith, M. K., Welty, C., and McGuiness, D. L., eds., “OWL Web Ontology Language
Guide,” http://www.w3.org/TR/2004/REC-owl-guide-20040210/. 2004.

[15] Nau, D., Au, T., Ilghami, O., Kuter, U., Munoz-Avila, H., Murdock, J., Wu, D., and
Yaman, F., “Applications of SHOP and SHOP2”, IEEE Intelligent Systems, pp. 34-41,
March/April 2005.

[16] Breslow, L., and Aha, D., NaCoDAE: Navy Conversational Decision Aids Environment.
Technical Report AIC-97-018, Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington, DC, 1997.

[17] Mulvehill, A., Benyo, B., Rager, D., and DePalma, E., “ACT – The Automated Clearance
Tool: Improving the Diplomatic Clearance Process for AMC”, 2004 Command and
Control Research Technology Symposium, June 2004 (Conference Proceedings)

[18] Mulvehill, A., “Authoring Templates With Tracker,” IEEE Intelligent Systems, pp. 42-
45, March/April 2005.

[19] Jabber: http://www.jabber.org/about/overview.shtml. Also see, Moore, D., Wright, W.
Jabber Developer's Handbook, 2004.

[20] Jockman, Brandon, Eliot Kimber, and Josh Reynolds. Enabling Low-Cost XML-Aware
Searching Capable of Complex Querying. Isogen International, 2002.

 49

[21] Baeza-Yates, R, and Ribeiro-Neto, B., Modern Information Retrieval, New York:
Addison-Wesley, 1999.

[22] http://www.levenshtein.net/

[23] http://jazzy.sourceforge.net/

[24] Dyer, D., Cross, S., Knoblock, C., Minton, S., and Tate, A., “Guest Editors’ Introduction:
Planning with Templates”, IEEE Intelligent Systems, pp. 13-15, March/April 2005.

11. Acknowledgements
We would like to thank Doug Dyer, the DARPA sponsor, AFRL and the Subject Matter
Experts who supported the development of Tracker and of the experiment applications. This
work was supported by DARPA and AFRL under Contract No. F30602-00-C-0039.

 50

12. Appendix A
12.1 Example Communication Protocol between Tracker and HICAP

Codes for the communications between Tracker and HICAP

1. Tracker:

 Sending:

 Ta Tells HICAP whenever any template is opened

 Tb Tells HICAP whenever any template is closed

 Tc Tells HICAP whenever any slot is updated, providing the new value

 Td Tells HICAP when user accepts or rejects a suggestion

 Receiving (Maintains a pending/accepted/rejected window):

 Te Receives HICAP's suggestion for opening a specific template

 Tf Receives HICAP's suggestion for substituting a specific template

 Tg Receives HICAP's suggestion for a specific slot value

 Th Receives HICAP's suggestion; displays a given text message

2. HICAP:

 Receiving:

 Ha Receives info on template openings

 Hb Receives info on template closings

 Hc Receives any change to any subscribed slot
 - HICAP checks whether this triggers any case

 Hd Receives acceptance/rejectance feedback on its suggestions

 Sending:

He

Offer suggestions to Tracker for opening a specific template
 - HICAP displays its reasons in favor of this new template

Hf Offer suggestions to Tracker for substituting specific template
 - HICAP displays its reasons in favor of this new template and against the currently-opened
template

Hg

Offer suggestions to Tracker for a specific slot value
 - This might later be broken into two codes (ala Hf and Hg)

Hh

Offer other suggestions to Tracker (i.e., arbitrary text message)
 - Semantics of these suggestions will not be interpreted by Tracker

 51

12.2 Tracker/HICAP Demo 1
 1. User begins tax domain session
 - User opens whether-to-file template (Ta,Ha)
 - Causes HICAP to open WhetherToFile.cdf (Goal: DetermineWhetherToFile)
 2. User inputs whether-to-file slot values (Tc,Hc):
 - Filing Status (FilingStatus): Married-filing-jointly
 - Gross Income (grossIncome): $3,604 (i.e., x<$12,950)
 - Age at end of 2000 (ageEnd2000X): 39 (i.e., x<65)
 - User pushes "Update Templates" button
 3. HICAP suggests filing no tax form (Hh,Th)
 - Suggestion = #1; Tracker pushes this onto PendingList
 - Case: RuleFileNoForm in WhetherToFile.cdf
 4. User edits (one digit for) a whether-to-file slot value (Tc,Hc):
 - Gross Income (grossIncome): $43,604 (i.e., $12,950<x<$50,000)
 5. HICAP suggests filing some tax form (Hh,Th)
 - Suggestion = #2; Tracker pushes this onto PendingList
 - Case: RuleFileSomeForm in WhetherToFile.cdf
 6. User Edits Suggestion Lists:
 - User rejects Suggestion #1 (Td,Hd)
 - User accepts Suggestion #2 (Td,Hd)
 - User opens HiCAPTracker2-select-tax-form template (Ta,Ha)
 - Causes HICAP to open SelectTaxForm.cdf (Goal: SelectTaxForm)
 7. User inputs HiCAPTracker2-select-tax-form slot values (Tc,Hc):
 - Received Dependent Benefits (receivedDepBenefits): No
 - Student Loan Interest Deduction (studentLoanInterest): No
 - Taxable Interest (taxable-interest): $168 (i.e., x<$400)
 - User pushes "Update Templates" button
 8. HICAP suggests filing tax form 1040EZ (He,Te):
 - Suggestion = #3; Tracker pushes this onto PendingList
 - Case: RuleFileForm1040EZ_2 in SelectTaxForm.cdf
 9. User Edits Suggestion Lists:
 - User accepts Suggestion #3 (Td,Hd)
 - User opens IRS-1040-EZ template (Ta,Ha)
 - Causes HICAP to open nothing
 Contents of IRS-1040-EZ template at this time:
 - Taxpayer: Clintonius Bush
 Taxpayer-SSN: 123-45-6789
 Street-Address: 1 CIA Way
 City: Arlington
 State: Virginia
 ZIP-code: 22217
 Spouses-name: Clintonia Bush

 52

 Spouses-SSN: 123-45-6790
 - Filing-Status: "Married-filing-jointly"
 - taxpayer-pres-campaign: "No"
 - spouse-pres-campaign: "Yes"
 - Line 2 (taxable-interest): $168
10. User inserts the following into template IRS-1040-EZ (Tc,Hc):
 - Line 1 (Wages-salaries-tips): $42,836
11. User edits (one digit for) a IRS-1040-EZ slot value (Tc,Hc):
 - Line 2 (taxable-interest): $768 (i.e., x>$400)
 - User pushes "Update Templates" button
12. HICAP suggests substituting template IRS-1040 for IRS-1040-EZ (Hf,Tf)
 - Suggestion = #4; Tracker pushes this onto PendingList
 - Case: RuleFileForm1040_3 in SelectTaxForm.cdf
13. User edits Suggestion Lists:
 - User accepts Suggestion #4 (Hd,Td)
 - User closes Template IRS-1040-EZ (Tb,Hb)
 - User opens Template IRS-1040 (Ta,Ha)
 - Causes HICAP to open:
 - WhetherToFile2441.cdf
 - WhetherToChangeDeduction.cdf
 - Contents of IRS-1040 template at this time:
 - Taxpayer: Clintonius Bush
 Taxpayer-SSN: 123-45-6789
 Street-Address: 1 CIA Way
 City: Arlington
 State: Virginia
 ZIP-code: 22217
 Spouses-name: Clintonia Bush
 Spouses-SSN: 123-45-6790
 - Filing-Status: "Married-filing-jointly"
 - Exemptions:
 - Line 6a (Yourself): Yes
 - Line 6b (Spouse): Yes
 - Line 6c (Dependents):
 - Danius H. Bush
 - 111-11-1111
 - Son
 - Yes
 - Line 6d (total-exemptions): 3
 - Line 7 (Wages-salaries-tips): $42,836

